Главная /
Программирование /
Оптимизация приложений с использованием библиотеки Intel MKL
Оптимизация приложений с использованием библиотеки Intel MKL - ответы на тесты Интуит
Правильные ответы выделены зелёным цветом.
Все ответы: Данный курс обучает основам использования библиотеки математических прикладных программ Intel® Math Kernel Library (Intel® MKL), которая содержит основные функции для выполнения базовых операций линейной алгебры таких как перемножение матриц и решение систем линейных алгебраических уравнений, а также функции для вычисления преобразования Фурье, случайных распределений и других математических операций.
Все ответы: Данный курс обучает основам использования библиотеки математических прикладных программ Intel® Math Kernel Library (Intel® MKL), которая содержит основные функции для выполнения базовых операций линейной алгебры таких как перемножение матриц и решение систем линейных алгебраических уравнений, а также функции для вычисления преобразования Фурье, случайных распределений и других математических операций.
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * x
, где x
- вектор, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
1742.1
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * x + y
, где x
– разреженный вектор, y
- вектор,alpha
- скаляр. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
1268.3
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
174.19565
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
25.370842
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью скалярное произведение векторов
(x, y)
, где x
, y
- векторы. В файле содержатся данные для вычислений: размер (size) вещественного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
1.9369
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
alpha = x^T * y
, где x
- разреженный комплексный вектор,y
-комплексный вектор,alpha
- комплексный скаляр. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
290.76
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 7 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
1.421602
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
895.19497
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью значение
alpha = ||x||2
, где x
- вектор, alpha
- скаляр. В файле содержатся данные для вычислений: размер (size) вещественного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
5.4309581
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = A * x
, где A
- разреженная комплексная матрица, x
, y
- комплексные векторы. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
358.93
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
31.261433
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
22.802439
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(T) * x + beta * y
, где A
- матрица, x
, y
- векторы, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер вещественной матрицы М, значения элементов матрицы M, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, значение вещественного скаляра beta
, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
175.80608
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = A^-1 * x
, где A
- треугольная разреженная матрица, x
, y
- векторы. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
20.241
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
112.73469
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
30.391
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
A * x
, где A
- треугольная матрица, x
- вектор. В файле содержатся данные для вычислений: размер (size) вещественной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
135.37971
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^T * x + beta * y
, где A
- разреженная комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
131.92
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
165.12508
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
82.167
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * x * y^(H) + A
, где A
- комплексная матрица, x
, y
- комплексные векторы, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y, размер (size) комплексной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер комплексной матрицы М, значения элементов матрицы M. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
5551.4
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^T * x + beta * y
, где A
- Эрмитова разреженная комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
248.18
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
73.785172
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
85.032
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * x * x^(T) + A
, где A
- симметрическая матрица, x
- вектор, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) вещественной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
2274.8613
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A * x + beta * y
, где A
- треугольная разреженная комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
213.97
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 7 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
1.244396
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
21.752226
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * B * A + beta * C
, где A
, B
, C
- матрицы, A
- симметрическая матрица, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественого скаляра alpha
, значение вещественого скаляра beta
, размер (size) вещественной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q, размер (size) вещественной подматрицы C
, позиция подматрицы C
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер вещественной матрицы R, значения элементов матрицы R. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
2531.8556
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^-1 * x
, где A
- треугольная разреженная матрица, x
, y
- векторы,alpha
- скаляр. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
20.468
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
41.092854
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
32080.846
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(T) * A + beta * C
, где A
, C
- комплексные матрицы, C
- симметрическая матрица, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной матрицы C
, значения элементов верхнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
16709.116
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A * B + beta * C
, где A
- разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
24485.
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
150.95346
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
38450.015
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(H) * B + (alpha * B)^(H) * A + beta * C
, где A
, B
, C
- комплексные матрицы, C
- Эрмитова матрица, alpha
- комплексный скаляр, beta
- скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение вещественного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной матрицы C
, значения элементов нижнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
6483.9660
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^T * B + beta * C
, где A
- Эрмитова разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
11013.
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
86.950874
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
24.162
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(T) * B^(T) + beta * C
, где A
, B
, C
- матрицы, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) вещественной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер вещественной матрицы M, значения элементов матрицы M, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q, размер (size) вещественной подматрицы C
, позиция подматрицы С
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер вещественной матрицы R, значения элементов матрицы R. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
5963.3375
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^T * B + beta * C
, где A
- треугольная разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
10989.
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
452.41
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A * B^(H) + B * (alpha * A)^(H) + beta * C
, где A
,B
,C
- комплексные матрицы, C
- Эрмитова матрица, alpha
- комплексный скаляр, beta
- скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение вещественного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, значения элементов нижнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
19830.319
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A * B + beta * C
, где A
- кососимметричная разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
18971.936
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
184.44
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * x
, где x
- вектор, alpha
– скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
2747.2869
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * x + y
, где x
– разреженный вектор, y
- вектор,alpha
- скаляр. Исходные данные содержатся в файле blas1_test_101.txt. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
2501.9602
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
78.519432
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
43.723711
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью скалярное произведение векторов
(x, y)
, где x
, y
- векторы. В файле содержатся данные для вычислений: размер (size) вещественного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
6.2152862
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
alpha = x^T * y
, где x
- разреженный комплексный вектор, y
- комплексный вектор,alpha
- комплексный скаляр. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
388.51390
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 7 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
1.615035
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
1627.2609
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью значение
alpha = ||x||2
, где x
- комплексный вектор, alpha
- скаляр. В файле содержатся данные для вычислений: размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
5.1806
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = A^T * x
, где A
- разреженная комплексная матрица, x
, y
- комплексные векторы. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
154.65026
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
29.606954
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
57.245980
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A^(H) * x + beta * y
, где A
- комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер комплексной матрицы М, значения элементов матрицы M, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, значение комплексного скаляра beta
, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
573.21
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = A^-1 * x
, где A
- треугольная разреженная матрица, x
, y
- векторы. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
17.400379
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
91.960715
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
12.585
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
A * x,
где A
- треугольная комплексная матрица, x
- комплексный вектор. В файле содержатся данные для вычислений: размер (size) комплексной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
351.33
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^T * x + beta * y
, где A
- разреженная комплексная матрица, x,y
- комплексные векторы, alpha
, beta
– комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
85.721466
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
77.710881
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
116.00
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * x * y^(T) + A
, где A
- комплексная матрица, x
, y
- комплексные векторы, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y, размер (size) комплексной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер комплексной матрицы М, значения элементов матрицы M. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
6008.3888
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A * x + beta * y
, где A
- Эрмитова разреженная комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
311.90369
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
81.525973
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
117.22
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * x * y^(T) + alpha * y * x^(T) + A
, где A
- симметрическая матрица, x
, y
- векторы, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y, размер (size) вещественной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
1500.5
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A * x + beta * y
, где A
- треугольная разреженная комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
195.56573
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 7 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
1.427624
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
28.648291
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * B * A + beta * C
, где A
, B
, C
- комплексные матрицы, A
- симметрическая матрица, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, позиция подматрицы C
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер комплексной матрицы R, значения элементов матрицы R. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
62505.
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^-T * x
, где A
- треугольная разреженная матрица, x
, y
- векторы,alpha
- скаляр. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
19.949013
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
35.215618
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
101.15412
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * A^(H) + beta * C
, где A
, C
- комплексные матрицы, C
- Эрмитова матрица, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной матрицы C
, значения элементов нижнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
9730.3
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^T * B + beta * C
, где A
- разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
33652.318
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
121.54460
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
20724.170
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * B * A
, где A
, B
- матрицы, A
- треугольная матрица, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественной матрицы A
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
3652.5
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A * B + beta * C
, где A
- Эрмитова разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
25896.615
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
98.054787
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
27.059
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A^(T) * B^(H) + beta * C
, где A
, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, позиция подматрицы С
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер комплексной матрицы R, значения элементов матрицы R. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
9314.0
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A * B + beta * C
, где A
- треугольная разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
10349.149
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
517.89
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * B * A
, где A
, B
- матрицы, A
- треугольная матрица, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественной подматрицы A
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
9434.5
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
C = alpha * A^-T * B
, где A
- треугольная разреженная матрица, B
, C
- матрицы,alpha
- скаляр. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
10267.
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
334.45
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * x
, где x
– комплексный вектор, alpha
– комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
1282.1
.Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * x + y
, где x
- разреженный комплексный вектор,y
- комплексный вектор,alpha
- комплексный скаляр. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
2922.2
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
71.558945
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
21.138390
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha + (x, y)
, где x
, y
- векторы, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
2.6625
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
alpha = x^H * y
, где x
- разреженный комплексный вектор, y
- комплексный вектор,alpha
- комплексный скаляр. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
372.12
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
40.795597
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
971.47401
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью значение
alpha = ||x||2
, где x
- комплексный вектор, alpha
- скаляр. В файле содержатся данные для вычислений: размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
5.9752635
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = A * x
, где A
- симметричная разреженная матрица, x
, y
- векторы. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
56.130
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
59.580910
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
1258.8940
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A * x + beta * y
, где A
- комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер комплексной матрицы М, значения элементов матрицы M, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, значение комплексного скаляра beta
, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
395.17067
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = A^-1 * x
, где A
- треугольная разреженная комплексная матрица, x
, y
- комплексные векторы. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
34.652
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
65.994453
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
25.944
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
A^(T) * x
, где A
- треугольная комплексная матрица, x
- комплексный вектор. В файле содержатся данные для вычислений: размер (size) комплексной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
110.35188
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A * x + beta * y
, где A
- симметричная разреженная матрица, x
, y
- векторы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
57.981
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 7 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
44.22821
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
26.753
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * x * y^(H) + A
, где A
- комплексная матрица, x
, y
- комплексные векторы, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y, размер (size) комплексной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер комплексной матрицы М, значения элементов матрицы M. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
5191.9398
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^T * x + beta * y
, где A
- Эрмитова разреженная комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
211.40
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
155.15282
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
174.49
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * x * y^(T) + alpha * y * x^(T) + A
, где A
- симметрическая матрица, x
, y
- векторы, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y, размер (size) вещественной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
439.36148
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A * x + beta * y
, где A
- кососимметричная разреженная матрица, x
, y
- векторы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
11.051
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
33.823872
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
20.144304
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A * B + beta * C
, где A
, B
, C
- комплексные матрицы, A
- симметрическая матрица, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, позиция подматрицы C
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер комплексной матрицы R, значения элементов матрицы R. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
11810.758
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^-1 * x
, где A
- треугольная разреженная комплексная матрица, x
, y
- комплексные векторы,alpha
- комплексный скаляр. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
39.044
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
87.953033
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
156.49090
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(H) * A + beta * C
, где A
, C
- комплексные матрицы, C
- Эрмитова матрица, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной матрицы C
, значения элементов верхнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
9793.8032
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^T * B + beta * C
, где A
- симметричная разреженная матрица, B
, C
- матрицы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
3839.2
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
66.576981
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
7050.4045
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(T) * B
, где A
, B
- матрицы, A
- треугольная матрица, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественной матрицы A
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
1423.8549
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A * B + beta * C
, где A
- Эрмитова разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
15472.
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
61.585274
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
24.747
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(H) * B + beta * C
, где A
, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, позиция подматрицы С
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер комплексной матрицы R, значения элементов матрицы R. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
26105.136
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^T * B + beta * C
, где A
- кососимметричная комплексная матрица, B
, C
- матрицы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
3843.4
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
1572.3
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * B * A^(T)
, где A
, B
- матрицы, A
- треугольная матрица, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественной подматрицы A
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
5699.8580
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
C = alpha * A^-1 * B
, где A
- треугольная разреженная матрица, B
, C
- матрицы,alpha
- скаляр. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
9508.3472
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
3333.8
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * x
, где x
- комплексный вектор, alpha
– комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
3401.8194
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * x + y
, где x
- разреженный комплексный вектор, y
- комплексный вектор,alpha
- комплексный скаляр. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
1595.2768
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 7 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
82.20577
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
47.160776
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью значение
alpha = x^(T) * y
, где x
, y
- комплексные векторы, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
3.7301
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
alpha = x^H * y
, где x
- разреженный комплексный вектор, y
- комплексный вектор,alpha
- комплексный скаляр. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
666.20096
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
38.390905
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
16.459262
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью значение
alpha = ||x||1
, где x
- вектор, alpha
- скаляр. В файле содержатся данные для вычислений: размер (size) вещественного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
39.308
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = A * x
, где A
- симметричная разреженная матрица, x
, y
- векторы. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
77.902947
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
63.257493
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
818.54859
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * x + beta * y
, где A
- Эрмитова матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, значение комплексного скаляра beta
, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
672.99
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = A^-1 * x
, где A
- треугольная разреженная комплексная матрица, x
, y
- комплексные векторы. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
47.139414
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 7 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
59.94602
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
55.310
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
A^(-T) * x
, где A
- треугольная матрица, x
- вектор. В файле содержатся данные для вычислений: размер (size) вещественной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
84.290406
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^T * x + beta * y
, где A
- симметричная разреженная матрица, x
, y
- векторы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
28.588222
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данного вектора правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
54.811882
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
64.179
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * x * x^(H) + A
, где A
- Эрмитова матрица, x
- комплексный вектор, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
1576.5
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A * x + beta * y
, где A
- Эрмитова разреженная комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
83.000117
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
30.069687
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
144.24
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * B^(T) + beta * C
, где A
, B
, C
- матрицы, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) вещественной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер вещественной матрицы М, значения элементов матрицы M, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q, размер (size) вещественной подматрицы C
, позиция подматрицы C
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер вещественной матрицы R, значения элементов матрицы R. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
4023.4
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^T * x + beta * y
, где A
- кососимметричная разреженная матрица, x
, y
- векторы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
85.155529
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
46.372474
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
28.064703
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * B * A + beta * C
, где A
, B
, C
- комплексные матрицы, A
- Эрмитова матрица, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, позиция подматрицы C
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер комплексной матрицы R, значения элементов матрицы R. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
11887.
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^-T * x
, где A
- треугольная разреженная комплексная матрица, x
, y
- комплексные векторы,alpha
- комплексный скаляр. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
35.393465
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
224.14775
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
805.96761
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A^(T) * B + alpha * B^(T) * A + beta * C
, где A
, B
, C
- матрицы, C
- симметрическая матрица, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) вещественной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер вещественной матрицы M, значения элементов матрицы M, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q, размер (size) вещественной матрицы C
, значения элементов нижнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
6497.6
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A * B + beta * C
, где A
- симметричная разреженная матрица, B
, C
- матрицы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
4046.0370
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
65.329193
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
5177.5064
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * B
, где A
, B
- матрицы, A
- треугольная матрица, alpha
- скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексной матрицы A
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
17835.
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^T * B + beta * C
, где A
- Эрмитова разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
31947.755
Используя функции Intel® MKL PARDISO, напишите программу, которая решает уравнение
AX=B
для данной матрицы в правой части. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
55.519562
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
26.916
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * B * A + beta * C
, где A
, B
, C
- комплексные матрицы, A
- Эрмитова матрица, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной подматрицы A
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, позиция подматрицы С
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер комплексной матрицы R, значения элементов матрицы R. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
45902.
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^T * B + beta * C
, где A
- кососимметричная комплексная матрица, B
, C
- матрицы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
11087.621
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
1305.4
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A^(H) * B
, где A
, B
- комплексные матрицы, A
- треугольная матрица, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексной подматрицы A
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
22765.
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
C = alpha * A^-T * B
, где A
- треугольная разреженная комплексная матрица, B
, C
- комплексные матрицы,alpha
- комплексный скаляр. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
3122.2
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
2565.3
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * x + y
, где x
, y
- векторы, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
3089.5
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
alpha = x^T * y
, где x
- разреженный вектор, y
- вектор,alpha
- скаляр. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
3.2400
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
1432.0866
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью значение
alpha = x^(T) * y
, где x
, y
- комплексные векторы, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
6.9670654
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = A * x
, где A
- разреженная матрица, x
, y
- векторы. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
167.48
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
48.221837
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью значение
alpha = ||x||1
, где x
- вектор, alpha
- скаляр. В файле содержатся данные для вычислений: размер (size) вещественного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
26.191251
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = A * x
, где A
- симметричная разреженная комплексная матрица, x
, y
- комплексные векторы. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
258.08
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
7885.3070
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A * x + beta * y
, где A
- Эрмитова матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, значение комплексного скаляра beta
, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
445.50858
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A * x + beta * y
, где A
- разреженная матрица, x
, y
- векторы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
5.4481
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
71.880
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
A^(-H) * x
, где A
- треугольная комплексная матрица, x
- комплексный вектор. В файле содержатся данные для вычислений: размер (size) комплексной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
112.59859
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A * x + beta * y
, где A
- симметричная разреженная комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
119.73
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
48.082
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * x * x^(H) + A
, где A
- Эрмитова матрица, x
- комплексный вектор, alpha
– скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
4119.3058
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^T * x + beta * y
, где A
- треугольная разреженная матрица, x
, y
- векторы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
24.914
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
206.40
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(T) * B + beta * C
, где A
, B
, C
- матрицы, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) вещественной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер вещественной матрицы М, значения элементов матрицы M, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q, размер (size) вещественной подматрицы C
, позиция подматрицы C
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер вещественной матрицы R, значения элементов матрицы R. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
6510.4998
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^T * x + beta * y
, где A
- кососимметричная разреженная комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
531.28
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
16.576808
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A * B + beta * C
, где A
, B
, C
- комплексные матрицы, A
- Эрмитова матрица, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, позиция подматрицы C
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер комплексной матрицы R, значения элементов матрицы R. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
8960.2967
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A^T * B + beta * C
, где A
- разреженная матрица, B
, C
- матрицы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
2472.5
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
845.38328
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(T) * B + alpha * B^(T) * A + beta * C
, где A
, B
, C
- матрицы, C
- симметрическая матрица, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) вещественной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер вещественной матрицы M, значения элементов матрицы M, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q, размер (size) вещественной матрицы C
, значения элементов верхнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
642.03784
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A * B + beta * C
, где A
- симметричная разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
31678.
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
24.170
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * B * A^(T)
, где A
, B
- матрицы, A
- треугольная матрица, alpha
- скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексной матрицы A
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
4175.5238
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A * B + beta * C
, где A
- треугольная разреженная матрица, B
, C
- матрицы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
6427.8
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
17.672
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A * B + beta * C
, где A
, B
, C
- комплексные матрицы, A
- Эрмитова матрица, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной подматрицы A
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, позиция подматрицы С
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер комплексной матрицы R, значения элементов матрицы R. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
12784.766
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение
y = alpha * A * B + beta * C
, где A
- кососимметричная разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
37096.
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
5728.7
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(T) * B
, где A
, B
- комплексные матрицы, A
- треугольная матрица, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексной подматрицы A
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
19012.541
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
C = alpha * A^-1 * B
, где A
- треугольная разреженная комплексная матрица, B
, C
- комплексные матрицы,alpha
- комплексный скаляр. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
8587.9118
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
28896.
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * x + y
, где x
, y
- векторы, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
2564.1246
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
alpha = x^T * y
, где x
- разреженный вектор, y
- вектор,alpha
- скаляр. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
109.27916
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
811.18007
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью значение
alpha = x^(H) * y
, где x
, y
- комплексные векторы, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
3.8789
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = A^T * x
, где A
- разреженная матрица, x
, y
- векторы. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
86.613088
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
20.142707
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью значение
alpha = ||re(x)||1 + ||im(x)||1
, где x
- комплексный вектор, alpha
- скаляр. В файле содержатся данные для вычислений: размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
42.779
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = A * x
, где A
- симметричная разреженная комплексная матрица, x
, y
- комплексные векторы. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
422.15023
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
4189.7270
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * x + beta * y
, где A
- симметрическая матрица, x
, y
- векторы, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, значение вещественного скаляра beta
, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
82.340
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A * x + beta * y
, где A
- разреженная матрица, x
, y
- векторы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
48.069099
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
23.736
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * x * y^(T) + A
, где A
- матрица, x
, y
- векторы, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y, размер (size) вещественной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер вещественной матрицы М, значения элементов матрицы M. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
4837.4
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^T * x + beta * y
, где A
- симметричная разреженная комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
176.38922
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
92.285
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * x * y^(H) + y * (alpha * x)^(H) + A
, где A
- Эрмитова матрица, x
, y
- комплексные векторы, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y, размер (size) комплексной матрицы А
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
4812.6
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^T * x + beta * y
, где A
- треугольная разреженная матрица, x
, y
- векторы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
16.611707
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
17.998384
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * B^(H) + beta * C
, где A
, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер комплексной матрицы М, значения элементов матрицы M, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, позиция подматрицы C
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер комплексной матрицы R, значения элементов матрицы R. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
14175.
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A * x + beta * y
, где A
- кососимметричная разреженная комплексная матрица, x
, y
- комплексные векторы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
302.94693
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
20.817741
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * A^(T) + beta * C
, где A
, C
- матрицы, C
- симметрическая матрица, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) вещественной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер вещественной матрицы M, значения элементов матрицы M, размер (size) вещественной матрицы C
, значения элементов верхнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
2416.4
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A * B + beta * C
, где A
- разреженная матрица, B
, C
- матрицы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
4335.2142
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
5237.8089
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * B^(T) + alpha * B * A^(T) + beta * C
, где A
, B
, C
- комплексные матрицы, C
- симметрическая матрица, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной матрицы C
, значения элементов верхнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
28056.
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^T * B + beta * C
, где A
- симметричная разреженная комплексная матрица, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
13233.196
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
25.349
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(-1) * B
, где A
, B
- матрицы, A
- треугольная матрица, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественной матрицы A
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
799.22094
Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение
y = alpha * A^T * B + beta * C
, где A
- треугольная разреженная матрица, B
, C
- матрицы, alpha
, beta
- скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
4412.3777
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
21.245
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * A^(H) + beta * C
, где A
, C
- комплексные матрицы, C
- Эрмитова матрица, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной подматрицы C
, значения элементов верхнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
8986.6
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
4184.6
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * B * A^(-1)
, где A
, B
- матрицы, A
- треугольная матрица, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественной подматрицы A
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
2012.4174
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
16336.
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * x + y
, где x
, y
- комплексные векторы, alpha
– комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
53.551
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
1531.0718
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью значение
alpha = x^(H) * y
, где x
, y
- комплексные векторы, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
10.692507
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
45.212690
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью значение
alpha = ||re(x)||1 + ||im(x)||1
, где x
- комплексный вектор, alpha
- скаляр. В файле содержатся данные для вычислений: размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
66.741976
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
15.825
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A * x + beta * y
, где A
- симметрическая матрица, x
, y
- векторы, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, значение вещественного скаляра beta
, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
68.676925
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
48.940
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * x * y^(T) + A
, где A
- матрица, x
, y
- векторы, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y, размер (size) вещественной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер вещественной матрицы М, значения элементов матрицы M. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
3590.2406
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
37.180
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * x * y^(H) + y * (alpha * x)^(H) + A
, где A
- Эрмитова матрица, x
, y
- комплексные векторы, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y, размер (size) комплексной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
952.23460
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
25.038753
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(H) * B^(T) + beta * C
, где A
, B
, C
- комплексные матрицы, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер комплексной матрицы М, значения элементов матрицы M, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, позиция подматрицы C
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер комплексной матрицы R, значения элементов матрицы R. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
18562.920
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
64441.766
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A * A^(T) + beta * C
, где A
, C
- матрицы, C
- симметрическая матрица, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) вещественной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер вещественной матрицы M, значения элементов матрицы M, размер (size) вещественной матрицы C
, значения элементов нижнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
9570.7195
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с двойной точностью и с нормализацией. В исходном файле данных указана длина (1-е число,
N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
3949.9303
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A * B^(T) + alpha * B * A^(T) + beta * C
, где A
, B
, C
- комплексные матрицы, C
- симметрическая матрица, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной матрицы C
, значения элементов нижнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
34765.594
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * B * A^(-H)
, где A
, B
- комплексные матрицы, A
- треугольная матрица, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексной матрицы A
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
2248.8309
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * A^(H) * A + beta * C
, где A
, C
- комплексные матрицы, C
- Эрмитова матрица, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной подматрицы C
, значения элементов нижнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
6289.6159
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * B * A^(-T)
, где A
, B
- комплексные матрицы, A
- треугольная матрица, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексной подматрицы A
, значения элементов нижнего треугольника (включая главную диагональ) матрицы A
, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
4407.3597
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение
alpha * x + y
, где x
, y
- комплексные векторы, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
149.34373
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью значение
alpha = ||x||2
, где x
- вектор, alpha
- скаляр. В файле содержатся данные для вычислений: размер (size) вещественного вектора X, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
4.5273
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * x + beta * y
, где A
- матрица, x
, y
- векторы, alpha
, beta
– скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер вещественной матрицы М, значения элементов матрицы M, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, значение вещественного скаляра beta
, размер (size) вещественного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
321.62
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
A^(T) * x
, где A
- треугольная матрица, x
- вектор. В файле содержатся данные для вычислений: размер (size) вещественной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
79.460
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * x * y^(T) + A
, где A
- комплексная матрица, x
, y
- комплексные векторы, alpha
- комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y
, значения элементов вектора Y, размер (size) комплексной подматрицы А
, позиция подматрицы А
в матрице М - индекс элемента матрицы М, соответствующего элементу A[0][0]
, размер комплексной матрицы М, значения элементов матрицы M. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
6896.4
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * x * x^(T) + A
, где A
- симметрическая матрица, x
- вектор, alpha
- скаляр. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, размер (size) вещественного вектора Х, шаг выборки (increment) элементов вектора x
, значения элементов вектора X, размер (size) вещественной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
370.18
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * B + beta * C
, где A
, B
, C
- матрицы, A
- симметрическая матрица, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественого скаляра alpha
, значение вещественого скаляра beta
, размер (size) вещественной матрицы А
, значения элементов верхнего треугольника (включая главную диагональ) матрицы A
, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q, размер (size) вещественной подматрицы C
, позиция подматрицы C
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер вещественной матрицы R, значения элементов матрицы R. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
7539.5
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A^(T) * A + beta * C
, где A
, C
- комплексные матрицы, C
- симметрическая матрица, alpha
, beta
- комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение комплексного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной матрицы C
, значения элементов нижнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
6247.4
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * B^(H) + B * (alpha * A)^(H) + beta * C
, где A
, B
, C
- комплексные матрицы, C
- Эрмитова матрица, alpha – комплексный скаляр, beta
- скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение вещественного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной матрицы C
, значения элементов верхнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
16133.
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A * B + beta * C
, где A
, B
, C
- матрицы, alpha
, beta
- скаляры. В файле содержатся данные для вычислений: значение вещественного скаляра alpha
, значение вещественного скаляра beta
, размер (size) вещественной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер вещественной матрицы M, значения элементов матрицы M, размер (size) вещественной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер вещественной матрицы Q, значения элементов матрицы Q, размер (size) вещественной подматрицы C
, позиция подматрицы С
в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0]
, размер вещественной матрицы R, значения элементов матрицы R. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
4279.3
Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение
alpha * A^(H) * B + (alpha * B)^(H) * A + beta * C
, где A
,B
,C
- комплексные матрицы, C
- Эрмитова матрица, alpha
- комплексный скаляр, beta
- скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha
, значение вещественного скаляра beta
, размер (size) комплексной подматрицы A
, позиция подматрицы A
в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0]
, размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной подматрицы B
, позиция подматрицы B
в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0]
, размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C
, значения элементов верхнего треугольника (включая главную диагональ) матрицы C
. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами
, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
9175.1