Главная /
Алгоритмы и дискретные структуры /
Языки и исчисления
Языки и исчисления - ответы на тесты Интуит
Правильные ответы выделены зелёным цветом.
Все ответы: В курсе рассказывается об основных понятиях математической логики (логика высказываний, языки первого порядка, выразимость, исчисление высказываний, разрешимые теории, теорема о полноте, начала теории моделей).
Все ответы: В курсе рассказывается об основных понятиях математической логики (логика высказываний, языки первого порядка, выразимость, исчисление высказываний, разрешимые теории, теорема о полноте, начала теории моделей).
Если
A
и B
- пропозициональные формулы, то такой же формулой будет:
(1) ¬A
(2) A¬B
(3) A¬∨¬B
Теория
Г
в сигнатуре S
- это произвольное:
(1) множество замкнутых формул в
S
(2) замыкание
S
(3) множество
Г
Если в бескванторной формуле заменить атомы на пропозициональные, то получим формулу:
(1) атомарную
(2) прототип
(3) тавтологию
Для сигнатуры аксиомой равенства будет:
(1)
(2)
(3)
Множество истинных бескванторных формул сигнатуры с равенством и константами для всех элементов интерпретации - это:
(1) диаграмма
(2) область определения
(3) интерпретация
Если
S
не пусто, , то для того, чтобы F
был фильтром нужно:
(1)
(2)
(3)
Схема "И - НЕ" имеет:
(1) 2 входа и 2 выхода
(2) 1 вход и 2 выхода
(3) 2 входа и 1 выход
Аксиомой исчисления высказываний является:
(1)
(2)
(3)
Вариант исчисления высказываний - исчисление:
(1) множеств
(2) секвенций
(3) продукций
Если
М
- непустое множество, то множество всех <m1, m2,…, mk>
- это:
(1)
Mk
(2)
Mk
(3)
М(k)
Арифметические формулы определяются сигнатурой
S
, носителем N
вида:
(1)
S=‹+,x,=›, N=‹1,2,3,…›
(2)
S=‹+,-x›, N=‹1,2,3,…›
(3)
S=‹+,-,=›, N=‹1,2,3,…›
В элиминация кванторов:
(1) не выполнима
(2) выполнима
(3) не определена
В игре Эренфойхта игроков:
(1) 4
(2) 3
(3) 2
Исчисление предикатов построено над:
(1) высказываниями
(2) формулами первого порядка
(3) тавтологиями
Формулы
A
и B
эквивалентны тогда и только тогда, когда тавтологией является формула:
(1) (A→B)∧(B→A)
(2) (A→B)∨(B→A)
(3) (A→B)∧(¬A→¬B)
Теория
Г
может быть:
(1) обычной
(2) прямой
(3) противоречивой
Значения разных атомарных формул выбирать независимо:
(1) можно
(2) нельзя
(3) можно лишь для тавтологий
Теория сигнатуры с равенством имеет нормальную модель тогда и только тогда, когда:
(1) она непротиворечива при добавлении аксиом равенства
(2) она противоречива при добавлении аксиом равенства
(3) все равенства нормальные.
Нормальная интерпретация
А
сигнатуры S
с равенством может быть расширена до нормальной модели теории Т
, если:
(1) все
П1
-формулы S
, выводимые из Т
, истинны в А
(2) хоть одна
П1
-формула S
, выводимая из Т
, истинна в А
(3) все
П1
-формулы S
, выводимые из Т
, ложны в А
Если
S
не пусто, , то для того, чтобы F
был фильтром нужно:
(1)
(2)
(3)
Сложность булевой функции относительно базисных функций - это:
(1) максимальный размер схемы из B-элементов
(2) минимальный размер схемы из B-элементов
(3) мощность множества B
Аксиомой исчисления высказываний является:
(1)
(2)
(3)
Если
А
и В
- некоторые конечные множества формул, то секвенция обозначается:
(1)
(2)
(3)
Унарным предикатом на множестве
М
будет:
(1)
М → ‹И, Л›
(2)
М2 → ‹И, Л›
(3)
М3 → ‹И, Л›
Предикат определяемый формулой :
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений x,y
Если удалить символ < из сигнатуры , класс выразимых предикатов:
(1) изменяется
(2) не изменяется
(3) станет пустым
В игре Эренфойхта игроки:
(1) ходят по очереди
(2) ходят независимо
(3) делают по k ходов каждый сразу
Общезначима формула:
(1)
(2)
(3)
Тавтологией является формула (
A
,B
- формулы):
(1) ¬(A∨B)↔(A∧¬B)
(2) ¬(A∨B)↔(A∧B)
(3) ¬(A∨B)↔(¬A∧¬B)
Непротиворечиво:
(1) подмножество непротиворечивого множества
(2) дополнения противоречивого множества
(3) универсальное множество
Формула (
А
- бескванторная ) общезначима, если общезначима дизъюнкция подстановок:
(1)
(2)
(3)
Если теория имеет сколь угодно большое конечные нормальные модели, то она:
(1) имеет бесконечную нормальную модель
(2) не имеет бесконечную нормальную модель
(3) универсальна
Кольцо может быть в поле, если:
(1) нет делителей (никаких)
(2) нет делителей нуля
(3) есть простые делители
Фильтр на
S
со свойством или называется:
(1) ультрафильтром
(2) мегафильтром
(3) главнейшим
Если
A
и B
- полные наборы булевых функций, то для любой функции:
(1)
(2)
(3)
Выводом является:
(1)
(2)
(3)
Верно правило для некоторых конечных множеств формул
А, В, С, Д
:
(1)
(2)
(3)
Количество различных 0-местных предикатов равно:
(1) 0
(2) 1
(3) 2
Предикат определяемый формулой :
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений x,y
Для всякой формулы F сигнатуры существует бескванторная формула, задающая F на R - это:
(1) теорема Тарского - Зайденберга
(2) теорема Гегеля
(3) аксиома исчисления предикатов
В игре Эренфойхта, если есть предикат сигнатуры, различающий помеченные элементы интерпретации, то:
(1) выигрывает Новатор
(2) выигрывает Консерватор
(3) будет ничья
Общезначима формула:
(1)
(2)
(3)
Верно утверждение для любой булевой функции от аргументов:
(1) - записывается в виде пропозициональной формулы
(2) - тавтология, или - неопределенна
(3) и все получаемые из нее формулы - тавтологии
Множество Г с моделью называется:
(1) совместным
(2) совершенным
(3) моделируемым
Теорема Эрбрана:
(1) если выводима - формула, то существует конечное число подстановок с выводимой дизъюнкцией
(2) если выводима - формула, то существует конечное число подстановок с выводимой дизъюнкцией
(3) если выводима - формула, то выводима и - формула
Формула
А
семантически следует из теории T
,если она:
(1) истинна в любой модели
T
(2) ложна в некоторой модели
T
(3) имеет смысл (семантику)
Если
T1, T2
- теории сигнатуры с равенством, то:
(1) объединение
T2
со всеми - теоремами T1
совместно
(2) объединение
T2
со всеми - теоремами T1
не совместно
(3) дополнение
T2
до T1
совместно Всякий фильтр
F
на S
расширить до ультрафильтра :
(1) можно
(2) нельзя
(3) можно или нет, в зависимости от
S
Количество всех -местных булевых функций равно:
(1)
(2)
(3) , где
Любая тавтология в исчислении высказываний есть:
(1) аксиома
(2) теорема
(3) истина или ложь
Секвенция, в обеих частях которой встречаются только переменные, причем хоть одна из них встречается в обеих частях - это:
(1) аксиома
(2) доказательство
(3) вывод
Набор символов-обозначений в формулах с неотрицательными числами называется:
(1) сигнатурой
(2) носителем
(3) термом
Предикат "двоичное слово x состоит только из нулей":
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от числа нулей
Для семейства многочленов
Pn(x)
, взятие старшего коэффициента:
(1) понижает степень на единицу
(2) повышает степень на единицу
(3) понижает степень до нуля
Для упорядоченных множеств сигнатуры и носителей
Z
и Q
:
(1) выигрывает Новатор
(2) выигрывает Консерватор
(3) будет ничья
Формулы
А
и В
эквивалентны, если формула:
(1) - общезначима
(2) - общезначима
(3) - общезначима
Верна теорема для любой булевой функции :
(1) - представима дизъюнктивно нормальной формой
(2) - не представима дизъюнктивно нормальной формой
(3) - представима только дизъюнктивной нормальной формой
Если в
Г
все формулы истинны в интерпретации М
, то для некоторой замкнутой формулы А
:
(1)
(2)
(3)
Для замкнутой
А
можно указать этой же сигнатуры с добавленными функциональными символами, которая:
(1) лишь выполнима всегда с
А
(2) лишь невыполнима всегда с
А
(3) выполнима или невыполнима с
А
Непротиворечивая теория с равенством в не более счетной сигнатуре, не имеющая конечных моделей и категоричная в счетной мощности:
(1) полна
(2) неполна
(3) замкнута
Чтобы задать подструктуру нормальной интерпретации
В
, нужно взять подмножество носителя В
:
(1) замкнутое относительно сигнатурных операций
(2) не замкнутое относительно сигнатурных операций
(3) разрешимое
Аксиомы равенства в фильтрованном произведении нормальных интерпретаций:
(1) истинны
(2) ложны
(3) нормальны
Если B - полный базис, то существует :
(1)
(2)
(3)
Для любых формул исчисления высказывания
А В, С
выводима формула:
(1)
(2)
(3)
Секвенция выводима тогда и только тогда, когда она:
(1) имеет контрпример
(2) не имеет контрпримера
(3) является контрпримером
Формулу можно построить с использованием правила:
(1) атомарная - формула
(2) сигнатура - формула
(3) символ валентности - формула
Предикат "двоичное слово x - начало двоичного слова y":
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений x,y
Для некоторой сигнатуры
S
две ее интерпретации называются элементарно эквивалентными, если:
(1) в них истины одни и те же замкнутые формулы
S
(2) в них ложны одни и те же замкнутые формулы
S
(3) совпадают все формулы
S
Число ходов Новатора соответствует:
(1) кванторной глубине различающей интерпретации формулы
(2) числу переменных формулы
(3) количеству элементов носителя его итерации
Формула, истинная в некоторой интерпретации на некоторой оценке называется:
(1) выполнимой
(2) тавтологией
(3) силлогизмом
Функция эквивалентна:
(1)
(2)
(3)
Множество всех истинных в
N
формул сигнатуры не выводится формула:
(1) полно
(2) не полно
(3) пусто
Теорема о полноте позволяет заменить в формулировке:
(1) общезначимость на выводимость
(2) выводимость на общезначимость
(3) замкнутость на полноту
В теорию плотных линейных упорядоченных множеств без первого и последнего элемента входит аксиома:
(1) сохранения
(2) неравенства
(3) равенства
Если теория
П1
аксиоматизируема, то подструктура ее нормальной модели является:
(1) ее моделью
(2) ее сигнатурой
(3) полной
Всякое конечное гипердействительное число бесконечно близко к:
(1) некоторому стандартному числу
(2) бесконечно
(3) нулю
Для умножения двух -разрядных двоичных чисел существует схема:
(1) размера и глубины
(2) размера и глубины
(3) размера и глубины
Если
А, В, С
- формулы, то:
(1)
(2)
(3)
В выводе секвенции принципиально новое, не содержащегося в секвенции всегда:
(1) есть
(2) нет
(3) возможно, если оно вывод
Формулу можно построить с использованием правила:
(1) если
А, В
- формулы, то - формула
(2) если
А, В
- формулы, то - формула
(3) если
А, В
- формулы, то - формула Предикат "x - простое число номер n":
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений x,n
Тождественное отображение:
(1) не будет изоморфизмом
(2) будет изоморфизмом
(3) будет морфизмом
Глубина формулы равна:
(1) максимуму глубин
A
и B
(2) минимуму глубин
A
и B
(3) произведению глубин
A
и B
Любое вхождение переменной в терм:
(1) свободно
(2) атомарно
(3) терм
В списке выражений:
2-2=0, 2+3=6, 3+12, 2+2>2+2, 2-0=3-0, 56=50+6
приведено всего истинных и ложных высказываний соответственно:
(1) 2,3
(2) 3,2
(3) 3,3
Любая непротиворечивая теория:
(1) совместна
(2) несовместна
(3) замкнута
Из выводимости "Сколемовской нормальной формы", выводимость формулы:
(1) не следует
(2) следует
(3) нельзя определить
В теорию плотных линейных упорядоченных множеств без первого и последнего элемента входит аксиома:
(1)
(2)
(3)
Теория аксиоматизируема, если она:
(1) устойчива относительно перехода к подструктурам
(2) позволяет переходить к подструктурам
(3) если она полна
Нестандартные гипернатуральные числа:
(1) не существует
(2) существуют
(3) не имеют смысла
Для вычисления функции голосования существует схема:
(1) размера и глубины
(2) размера и глубины
(3) размера O и глубины
Теоремой исчисления высказываний является:
(1)
(2)
(3)
Верна формула:
(1)
(2)
(3)
Чтобы задать интерпретацию сигнатуры
S
, необходимо:
(1) указать ее носитель
(2) определить ее мощность
(3) перечислить ее элементы
Предикат
"x>y"
, x,y - целое:
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений x,y
Естественные интерпретации сигнатуры на носителе R:
(1) элементарно эквивалентны
(2) элементарно не эквивалентны
(3) естественно
Глубина формулы :
(1) на единицу больше глубины
A
(2) на единицу меньше глубины
A
(3) равна глубине
A
Если
х
- свободное вхождение в формулу А
или В
, то оно:
(1) может быть или нет свободным вхождением в
(2) свободное вхождение в всегда
(3) формула в или в
Если - формула,
Г
- непротиворечива, то:
(1)
А
- истинна
(2)
А
- ложна
(3) - истинна
Алгоритм, который по произвольной замкнутой формуле определяет ее выводимость:
(1) не существует
(2) существует практически
(3) существует теоретически
Множество теорем теории равенств:
(1) не является разрешимым
(2) является разрешимым
(3) универсально
Если любая подструктура любой нормальной модели является ее моделью, то теория:
(1) аксиоматизируема
(2)
П1
не аксиоматизируема
(3) противоречива
Если все элемнеты гипердействительного аналога множества конечны, то:
(1)
X
- неограничено
(2)
X
- пусто
(3)
X
- ограничено Отношение
x mod y=0
(x, y
- натуральные) является:
(1) симметричным, рефлексивным, транзитивным
(2) несимметричным, рефлексивным, нетранзитивным
(3) симметричным, рефлексивным, нетранзитивным
Для произвольных формул
А, В
:
(1)
(2)
(3)
Верна формула:
(1)
(2)
(3)
Параметром формулы
A
может быть:
(1) все его индивидуальные переменные
A
(2) все символы
A
(3) всевозможные комбинации символов
A
Предикат, выразимый в данной интерпретации:
(1) устойчив относительно ее автоморфизмов
(2) совпадает с любым ее автоморфизмом
(3) истинен для любых автоморфизмов
Любые два алгебраически замкнутых поля характеристики
О
:
(1) элементарно эквивалентны
(2) не эквивалентны
(3) пусты
Любые два плотно упорядоченных множества без первого и последнего элемента:
(1) эквиваленты
(2) элементарно эквивалентны
(3) не эквивалентны
Всякая выводимая в исчислении предикатов формула:
(1) является общезначимой
(2) не является общезначимой
(3) является правилом вывода
Если
A
и B
- пропозициональные формулы, то такой же формулой будет:
(1) A∧B
(2) AB∨¬B
(3) ¬A∧¬B¬∨A
Теория Г противоречива, если в ней выводится:
(1)
А
и
(2)
А
или
(3)
Бескванторная формула выводима, если ее прототип является:
(1) атомом
(2) тавтологией
(3) истиной
Для сигнатуры аксиомой равенства будет:
(1)
(2)
(3)
Истинность бескванторных формул из
D(A)
от присутствия дополнительных элементов:
(1) зависит
(2) не зависит
(3) изменяет
А
Если
S
не пусто, , то для того, чтобы F
был фильтром нужно:
(1)
(2)
(3)
Схема "ИЛИ - НЕ" имеет:
(1) 2 входа и 2 выхода
(2) 1 вход и 2 выхода
(3) 2 входа и 1 выход
Аксиомой исчисления высказываний является:
(1)
(2)
(3)
Исчисление секвенций - исчисление типа:
(1) генценцовского
(2) гельдеровского
(3) гильбертовского
k
-местной функцией на М
является:
(1)
f: Mk→M
(2)
f: X→M, X - подмножество Mk
(3)
f: M→Mk
Арифметическое множество - это множество:
(1) арифметических знаков
(2) арифметических формул
(3) натуральных чисел и арифметических знаков
Выразимые в арифметике Пресбургера предикаты - это бескванторные формулы из:
(1) констант, сложения, равенства, отношение порядка и сравнения
(2) переменных, сложения, сравнения, эквивалентности
(3) констант, переменных, отношений
Игроки игры Эренфойхта называются:
(1) Нападающий и Отступающий
(2) Новатор и Консерватор
(3) Выигрывающий и Проигрывающий
Формула, истинная в любой интерпретации сигнатуры называется:
(1) общей
(2) глобальной
(3) общезначимой
Тавтологией является формула (
A
,B
- формулы):
(1) (A∧B)→(B∧A)
(2) (A∨B)→(A∧B)
(3) (A∧B)→(A∨B)
Теория
Г
противоречива, если в ней выводима
(1) - любая формула
(2)
(3)
Общезначимость формулы свободными переменными равносильна общезначимости ее:
(1) дополнения
(2) замыкания
(3) отрицания
Если всякое конечное подмножество теории в сигнатуре с равенством имеет нормальную модель, то теория:
(1) не имеет нормальную модель
(2) имеет нормальную модель
(3) противоречива.
Если все
П1
-формулы сигнатуры S
с равенством, выводимые из теории Т
, истинны в А
, то:
(1) нормальная интерпретация
А
расширяема до нормальной теории Т
(2)
А
не расширяема до Т
(3)
А
и Т
совпадают Если
S
не пусто, , то для того, чтобы F
был фильтром нужно:
(1)
(2)
(3)
Полным набором B булевых функций называется набор, для которого:
(1) схемы B-элементов всегда максимальны
(2) некоторая булева функция задаваемая задаваема схемой из B-элементов
(3) любая булева функция задаваемая задаваема схемой из B-элементов
Аксиомой исчисления высказываний является:
(1)
(2)
(3)
Контрпример к секвенции - это набор значений переменных, для которых все формулы:
(1) из
В
- истинны, а из А
- ложны
(2) из
А
- истинны, из В
- истинны
(3) из
А
- истинны, а из В
- ложны Бинарным предикатом на множестве
М
будет:
(1)
М → ‹И, Л›
(2)
М2 → ‹И, Л›
(3)
М3 → ‹И, Л›
Предикат определяемый формулой
x=const
:
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от
const
Бескванторная формула сигнатуры :
(1) приводима к д.н.ф.
(2) не приводима к д.н.ф.
(3) не существует
В игре Эренфойхта:
(1) Новатор и Консерватор выбирают числа из интерпретации
(2) Консерватор выбирает элемент интерпретации и помечает его числом
(3) Новатор выбирает элемент интерпретации и помечает его числом
Общезначима формула:
(1)
(2)
(3)
Тавтологией является формула (
A
,B
- формулы):
(1) (A∨(A∧B))↔B
(2) (A∨(A∧B))↔A
(3) (A∨(A∧B))↔A∧B
Если бесконечное множество противоречиво, то некоторое его конечное подмножество будет:
(1) пустым
(2) непротиворечивым
(3) противоречивым
Если существуют подстановки для которых общезначима дизъюнкция, то формула (
А
- бескванторна):
(1) общезначима
(2) тавтология
(3) аксиома
Однородное линейное упорядоченное множество такой же мощности для всякой бесконечной мощности:
(1) не найдется
(2) найдется
(3) пусто
Если
T1, T2
- теории сигнатуры с равенством, то:
(1) существует нормальная модель
T1
и ее расширение - нормальная модель T2
(2) не существует нормальная модель
T1
и ее расширение - нормальная модель T2
(3)
Любой главный фильтр является:
(1) мегафильтром
(2) ультрафильтром
(3) универсальным
Сложность любой булевой -местной функций при наибольшем размере их схем:
(1) не превосходит при и больших
(2) не превосходит при и больших
(3) равна при и больших
Выводом является:
(1)
(2)
(3)
Верно правило для некоторых конечных множеств формул
А, В, С, Д
:
(1)
(2)
(3)
Количество различных 1-местных предикатов:
(1) равно 1
(2) равно 2
(3) равно 3
Предикат :
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений x,y
Число возможных диаграмм семейства многочленов:
(1) бесконечно
(2) конечно
(3) равно нулю
У Консерватора есть способ выиграть если интерпретации:
(1) совпадают
(2) изоморфны
(3) полиморфны
Не общезначима формула:
(1)
(2)
(3)
Верно утверждение для произвольных литералов, конъюнктов и дизъюнктов:
(1) дизъюнктивная нормальная форма - дизъюнкция литералов
(2) дизъюнктивная нормальная форма - дизъюнкция конъюнктов
(3) дизъюнктивная нормальная форма - конъюнкция дизъюнктов
Любое совместное множество замкнутых формул:
(1) противоречиво
(2) непротиворечиво
(3) замкнуто
Утверждение нельзя записать в виде:
(1)
(2)
(3)
Семантическое следование равносильно:
(1) эквивалентности
(2) выводимости
(3) совместности
- теорема
А
теории T1
и отрицающая ее П1
-теорема А
теории T2
:
(1) существует
(2) не существует
(3) совпадают
Свойство ультрафильтра отражает:
(1) по любому вопросу можно принять решение
(2) не по любому вопросу можно принять решение
(3) решение принимается голосованием
Количество всех различных -местных схем размера оценивается:
(1)
(2)
(3)
Для любой формулы
А
, формула А → А
есть:
(1) аксиома
(2) теорема
(3) истина или ложь
Правило вывода в исчислении секвенций - это правило, объявляющее:
(1) истинной нижнюю секвенцию при истинных верхних
(2) выводимой верхнюю секвенцию, если выводимы нижние
(3) выводимой нижнюю секвенцию, если выводимы верхние
Конструктивно определяемая последовательность переменных, занятых, скобок и символов сигнатуры называется:
(1) термом
(2) термином
(3) терминалом
Предикат "двоичные слова x и y имеют одинаковую длину":
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений длины
Для семейства многочленов
Pn(x)
, дифференцирование по X:
(1) понижает степень на единицу
(2) повышает степень на единицу
(3) не изменяет степень
Для упорядоченных множеств сигнатуры и носителей
Z
и R
:
(1) выигрывает Новатор
(2) выигрывает Консерватор
(3) будет ничья
Формулы
А
и В
эквивалентны, если они обе:
(1) истины на одной и той же интерпретации
(2) ложны на одной и той же интерпретации
(3) совпадают или неопределенны
Верна теорема для любой булевой функции :
(1) - представима конъюнктивно нормальной формой
(2) - не представима конъюнктивно нормальной формой
(3) - представима только конъюнктивной нормальной формой
Если
А
- замкнутая формула сигнатуры непротиворечивого множества Г
и выводима А
, то:
(1)
Г
будет полным в этой сигнатуре
(2)
Г
будет неполным в этой сигнатуре
(3)
Г
будет пополняемым в этой сигнатуре Замкнутая формула невыполнима, если:
(1) ее отрицание общезначимо
(2) ее дополнение общезначимо
(3) она тавтология
Непротиворечивая теория с равенством в не более счетной сигнатуре, не имеющая конечных моделей и категоричная в несчетной мощности:
(1) полна
(2) пуста
(3) плотна
Теория
П1
аксиоматизируема, если она:
(1) устойчива относительно перехода к подструктурам
(2) позволяет переходить к подструктурам
(3) если она полна
Голосование можно проводить для:
(1) атомарных вопросов
(2) любых формул
(3) тавтологий
Для сложения двух -разрядных двоичных чисел:
(1) не существует схемы размера
(2) существует схема размера
(3) существует схема размера
Если
Г
- множество формул, то:
(1)
(2)
(3)
Формула, представляющая секвенцию :
(1)
(2)
(3)
Формулу можно построить с использованием правила:
(1) если
А
- формула, то - формула
(2) если - формула, то
А и В
- формулы
(3) если - формула, то
А и В
- формулы Предикат "двоичное слово x - конец двоичного слова y":
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений x,y
Верно утверждение:
(1) изоморфные интерпретации - элементарно эквивалентны
(2) изоморфные интерпретации - не эквивалентны
(3) изоморфные интерпретации - элементарны
Глубина атомарных формул равна:
(1) 0
(2) 1
(3) 2
Двойственна к выполнимости:
(1) общезначимость
(2) значимость
(3) обратимость
Функция эквивалентна:
(1)
(2)
(3)
Из множества всех истинных в
N
формул сигнатуры не выводится формула:
(1)
(2)
(3)
"Сколемовская нормальная форма" позволяет получать формулы класса:
(1)
(2)
(3)
В теорию плотных линейных упорядоченных множеств без первого и последнего элемента входит аксиома:
(1)
(2)
(3)
Если любая подструктура любой нормальной модели является ее моделью, то теория:
(1)
П1
аксиоматизируема
(2)
П1
не аксиоматизируема
(3) противоречива
Среди гипердействительных чисел есть:
(1) ненулевые бесконечно малые
(2) нулевые бесконечно большие
(3) все остальные
Для умножения двух -разрядных двоичных чисел существует схема:
(1) размера и глубины
(2) размера и глубины
(3) размера и глубины
Если
А, В, С
- формулы, то:
(1)
(2)
(3)
Интуиционистское исчисление высказываний получается:
(1) исключением аксиомы "исключенного третьего"
(2) включением аксиомы "исключенного третьего"
(3) исключением аксиомы МР
Формулу можно построить с использованием правила:
(1) если
А, В
- формулы, то - формула
(2) если
А, В
- формулы, то - формула
(3) если
А, В
- формулы, то - формула Предикат
"x=2n"
, n - натуральное:
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений n
Отображение, обратное изоморфизму будет:
(1) изоморфизмом
(2) морфизмом
(3) тождественным
Глубина формулы равна:
(1) глубине
A
(2) глубин
A
со знаком минус
(3) глубин
A
минус единица Любое вхождение переменной в атомарную формулу:
(1) атомарно
(2) терм
(3) свободно
Для любого непротиворечивого множества замкнутых формул полное непротиворечивое множество замкнутых формул той же сигнатуры:
(1) не существует
(2) существует
(3) пусто
Вопрос о выводимости формулы исчисления предикатов сводится к выводимости:
(1) - формулы
(2) - формулы
(3) тавтологии
В теорию плотных линейных упорядоченных множеств без первого и последнего элемента входит аксиома:
(1)
(2)
(3)
Если теория устойчива относительно перехода к подструктурам, то она:
(1) аксиоматизируема
(2) не аксиоматизируема
(3) не моделируема
Все нестандартные гипернатуральные числа:
(1) бесконечно малы
(2) бесконечно велики
(3) совпадают
Для вычисления функции голосования существует схема:
(1) размера и глубины ,
(2) размера и глубины
(3) размера и глубины
Теоремой исчисления высказываний является:
(1)
(2)
(3)
Верна формула:
(1)
(2)
(3)
Чтобы задать интерпретацию сигнатуры
S
, необходимо:
(1) для каждого предикатного символа
S
указать предикат
(2) для каждого символа указать ее носитель
(3) перечислить все формулы
Биекция - автоморфизм интерпретации, если все функции и предикаты интерпретации:
(1) автономны
(2) совпадают
(3) устойчивы
Если всякий многочлен
Pn(x)
,n>0
имеет в поле X хотя бы один корень, то:
(1)
X
- алгебраически замкнуто
(2)
X
- разрешимо
(3)
X
- плотно Две формулы с параметрами эквивалентны, если они одновременно:
(1) только истинны
(2) только ложны
(3) истинны и ложны
Если
х
- свободное вхождение в формулу А
или В
, то оно:
(1) может быть или нет свободным вхождением в
(2) свободное вхождение в всегда
(3) формула в или в
Если - формула,
Г
- непротиворечива, то:
(1)
А
- ложна
(2) - ложна
(3) - истинна
Алгоритм вывода формул :
(1) не существует
(2) существует практически
(3) существует теоретически
Сигнатура теории полугрупп состоит из:
(1)
(2)
(3)
Любая теория, имеющая
П2
-аксиоматизацию:
(1) устойчива относительно объединения
(2) не устойчива относительно объединения
(3) не полна
Число
а
- предел ‹ai›
, i=0,1,…
, если есть бесконечно далекий ak
:
(1) бесконечно далекий от
а
(2) бесконечно близкий к
а
(3) совпадающий с
а
Отношение
x>y
(x, y
- натуральные) является:
(1) симметричным, рефлексивным, транзитивным
(2) несимметричным, нерефлексивным, транзитивным
(3) симметричным, рефлексивным, нетранзитивным
Для произвольных формул
А, В
:
(1)
(2)
(3)
Без аксиомы "исключенного третьего" выводима:
(1)
(2)
(3)
Параметром формулы
A
может быть:
(1) параметры формулы
(2) параметры формулы
(3) все части
A
Класс выразимых предикатов:
(1) бескванторные формулы
(2) кванторные формулы
(3) устойчивые формулы
Любые два алгебраически замкнутых поля конечной характеристики n:
(1) элементарно эквивалентны
(2) не эквивалентны
(3) пусты
Для счетной (конечной) сигнатуры и бесконечной ее интерпретации
M
:
(1) существует счетное подмножество
M
- подструктура M
(2) не существует счетное подмножество
M
- подструктура M
(3) существует несчетное подмножество
M
- подструктура M
Все теоремы теории
Г
:
(1) истинны в любой ее модели
М
(2) ложны в некоторой ее модели
М
(3) истинны только в одной модели
М
Если
A
и B
- пропозициональные формулы, то такой же формулой будет:
(1) A∨B
(2) A∨B¬A
(3) A→B¬A
Теория
Г
может быть:
(1) неопределенной
(2) непротиворечивой
(3) противоположной
Если прототип формулы - тавтология, то бескванторная формула:
(1) выводима
(2) атом
(3) истина
Для сигнатуры аксиомой равенства будет:
(1)
(2)
(3)
Любую модель теории
D(A)
можно считать расширением интерпретации А
, если:
(1) отождествить
a
из А
со значением константы из
(2) расширить
А
до В
(3) интерпретировать
В
как и А
Если
S
не пусто, , то для того, чтобы F
был фильтром нужно:
(1)
(2)
(3)
Схема "ИСКЛЮЧАЮЩЕЕ - ИЛИ" имеет:
(1) 2 входа и 2 выхода
(2) 1 вход и 2 выхода
(3) 2 входа и 1 выход
Аксиомой исчисления высказываний является:
(1)
(2)
(3)
Поиск контрпримера для формулы
А
сводится к поиску:
(1) теста правильности
А
(2) задачи такого же или общего вида
(3) доказательства формулы
А
Количество синонимов в списке ‹"арность", "местность", "валентность", "эквивалентность"› равна:
(1) 2
(2) 3
(3) 4
Множество натуральных чисел, не являющееся арифметическим:
(1) не существует
(2) существует
(3) совпадает с
N
В теории действительных чисел со сложением и умножением, элиминация кванторов:
(1) не выполнима
(2) выполнима
(3) не определена
Игра Эренфойхта определяется:
(1) парой интерпретаций
(2) парой стратегий
(3) Новатором
Если в тавтологию вместо пропозициональных переменных подставить формулы сигнатуры, получим:
(1) общезначимую формулу
(2) подстановку
(3) тавтологию
Тавтологией является формула (
A
,B
- формулы):
(1) ¬(A∧B)↔(A∨B)
(2) ¬(A∧B)↔(¬A∨¬B)
(3) ¬(A∧B)↔(A∧B)
Если в теории
Г
выводима формула (А - любая формула), то она:
(1) замкнута
(2) противоречива
(3) непротиворечива
Формулы класса :
(1) по существу ничем не отличаются от бескванторных
(2) ничем, по существу не схожи с бескванторными
(3) совпадают с термами
Если
А
- бесконечная нормальная интерпретация сигнатуры с равенством,то нормальная интерпретация В А
большой мощности , является элементарным расширением А
:
(1) не существует
(2) существует
(3) пусто
Всякая коммутативная полугруппа с сокращением:
(1) может быть вложена в коммутативную группу
(2) не может быть вложена в коммутативную группу
(3) пуста
Если
S
не пусто, , то для того, чтобы F
был фильтром нужно:
(1)
(2)
(3)
Размером схемы называется число:
(1) входов
(2) проводников
(3) циклов
Аксиомой исчисления высказываний является:
(1)
(2)
(3)
Контрпример к секвенции будет контрпримером к формуле ( - конъюнкция, - дизъюнкция формул из А)
(1)
(2)
(3)
Тернарным (тренарным) предикатом на множестве
М
будет:
(1)
М → ‹И, Л›
(2)
М2 → ‹И, Л›
(3)
М3 → ‹И, Л›
Предикат определяемый формулой :
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений x,y
Бескванторная формула сигнатуры :
(1) приводима к системам вида
P=0, P>0
(2) не приводима к системам вида
P=0
(3) не приводима к системам вида
P>0
В игре Эренфойхта:
(1) Консерватор помечает элемент другой интерпретации после хода Новатора
(2) Новатор помечает элемент другой интерпретации после хода Консерватора
(3) Новатор и Консерватор одновременно ходят
Общезначима формула:
(1)
(2)
(3)
Тавтологией является формула (
A
, B
- формулы):
(1) (A∧(A∨B))↔B
(2) (A∧(A∨B))↔A
(3) (A∧(A∨B))↔A∨B
Интерпретация
М
теории Г
, в которой все формулы из Г
истинны в М
- это:
(1) модель
(2) морфизм
(3) модуль
Формула ,
c,d
- const:
(1) общезначима
(2) тавтология
(3) ложна
Если
А
- бесконечная нормальная интерпретация сигнатуры S
с равенством ,, то нормальное элементарное расширение мощности m:
(1) пусто
(2) не существует
(3) существует
Если
T1, T2
- теории сигнатуры с равенством, то:
(1) пресечение
T1
со всеми П1
-теоремами T2
совместно
(2) объединение
T1
со всеми П1
-теоремами T2
совместно
(3) дополнение
T1
до T2
совместно Ультрафильтр - это фильтр:
(1) не имеющий собственных расширений
(2) имеющий собственных расширений
(3) включающий все другие фильтры
Сложность большинства булевой -местной функций при наибольшем размере их схем:
(1) не меньше при и больших
(2) не меньше при и больших
(3) равна при и больших
Выводом является:
(1)
(2)
(3)
Верно правило для некоторых конечных множеств формул
А, В, С, Д
:
(1)
(2)
(3)
Количество 2-местных предикатов:
(1) равно 2
(2) равно 4
(3) больше 4
Предикат z=НОД(x,y), :
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений x,y
Для семейства многочленов
Pn(x)
, отбрасывание старшего члена:
(1) понижает степень на единицу
(2) повышает степень на единицу
(3) сводит
Pn(x)
к Pn(x)
Для упорядоченных множеств сигнатуры и носителей
N
и Z
:
(1) выигрывает Новатор
(2) выигрывает Консерватор
(3) будет ничья
Не общезначима формула:
(1)
(2)
(3)
Верно утверждение для произвольных литералов, конъюнктов и дизъюнктов:
(1) конъюнктивная нормальная форма - конъюнкция литералов
(2) конъюнктивная нормальная форма - конъюнкция дизъюнктов
(3) конъюнктивная нормальная форма - дизъюнкция конъюнктов
Если в
Г
все формулы истинны в интерпретации М
, то для некоторой замкнутой формулы А
:
(1)
(2)
(3)
Утверждение выполнимо только тогда, когда выполнимо:
(1)
(2)
(3)
В противоречивой теории:
(1) выводима любая формула
(2) не выводима любая формула
(3) не выводима хотя бы одна формула
Теория
Т
- П1
аксиоматизируема, если существуют П1
-формулы,из которых:
(1) выводятся все теоремы
Т
и другие
(2) не выводятся все теоремы
Т
(3) выводятся все теоремы
Т
и только они Если ультрафильтр неглавный, то:
(1) все игроки имеют выигрышные стратегии
(2) ни один игрок не имеет выигрышной стратегии
(3) игра сводится к ничье
При некотором сложность большинства булевых -местных функций:
(1) не больше
(2) не меньше
(3) не меньше
Если
Г
- множество формул, то тогда:
(1)
(2)
(3)
Процесс вывода можно представить:
(1) деревом
(2) орграфом
(3) неорграфом
Если
А
- предикатный символ валентности k, t1, t2, …, tk
- термы, то выражение А(t1, t2, …, tk)
- это:
(1) терминальная функция
(2) характеристическая функция
(3) атомарная функция
Предикат "z=x+y", где "+" - конкатенация двоичных слов:
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений x,y
Для сигнатуры и носителя
С
(комплексные числа) всякая формула:
(1) эквивалентна бескванторной
(2) совпадает с кванторной
(3) тавтология
Для упорядоченных множеств сигнатуры и носителей
R
и Q
:
(1) выигрывает Новатор
(2) выигрывает Консерватор
(3) будет ничья
Формулы
А
и В
эквивалентны, если формула:
(1) - общезначима
(2) - общезначима
(3) - общезначима
Верна теорема для любой булевой функции :
(1) - однозначно представима полиномом Жегалкина
(2) - представима полиномом Жегалкина неоднозначно
(3) - не представима полиномом Жегалкина
Если
А
- замкнутая формула сигнатуры непротиворечивого множества Г
и выводима , то:
(1)
Г
будет полным в этой сигнатуре
(2)
Г
будет неполным в этой сигнатуре
(3)
Г
будет пополняемым в этой сигнатуре Если отрицание замкнутой формулы общезначимо, то она:
(1) тавтология
(2) выполнима
(3) невыполнима
Конечно аксиоматизируемая полная теория в конечной сигнатуре:
(1) не разрешима
(2) разрешима
(3) пуста
Если теория устойчива относительно перехода к подструктурам, то она:
(1)
П1
аксиоматизируема
(2) не аксиоматизируема
(3) не моделируема
Ультрапроизведение семейства моделей некоторой теории моделью той же теории:
(1) не является
(2) не может быть
(3) является
Для сложения двух -разрядных двоичных чисел:
(1) не существует схемы размера и глубины
(2) существует схема размера и глубины
(3) существует схема размера и глубины
Если
Г
- множество формул, то:
(1)
(2)
(3)
Если секвенция выводима в исчислении секвенций, то представляющая ее формула в исчислении высказываний:
(1) выводима
(2) не выводима
(3) не определена
Формулу можно построить с использованием правила:
(1) если
А, В
- формулы, то - формула
(2) если - формулы, то - формула
(3) если
А, В
- формулы, то - формула Предикат "двоичное слово x входит в двоичного слова y":
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений x,y
Две интерпретации - изоморфны, если между ними существует:
(1) морфизм
(2) изоморфизм
(3) изометризм
Глубина формулы равна:
(1) минимуму глубин
A
и B
(2) максимуму глубин
A
и B
(3) сумме глубин
A
и B
Вхождение индивидной переменной, не из области действия одноименного квантора называется:
(1) пустым
(2) неопределенным
(3) свободным
Функция эквивалентна:
(1)
(2)
(3)
Из множества всех истинных в
N
формул сигнатуры не выводится формула:
(1)
(2)
(3)
Из выводимости формулы, выводимость ее "Сколемовской нормальной формы":
(1) следует
(2) не следует
(3) нельзя определить
В теорию плотных линейных упорядоченных множеств без первого и последнего элемента входит аксиома:
(1)
(2)
(3)
Теория
Т
- аксиоматизируема, если существуют -формулы, из которых:
(1) выводятся все теоремы
Т
и другие
(2) не выводятся все теоремы
Т
(3) выводятся все теоремы
Т
и только они Среди гипердействительных чисел есть:
(1) бесконечно большие числа
(2) бесконечно малые числа
(3) все остальные
Вычитание двух -разрядных двоичных чисел по модулю выполнима схема:
(1) размера и глубины
(2) размера и глубины
(3) размера и глубины
Если
А, В, С
- формулы, то:
(1)
(2)
(3)
Интуиционистская логика возникла как попытка формализовать:
(1) методы рассуждений
(2) математическую индукцию
(3) интуитивные рассуждения
Если
А
- формула, а x
- ее индивидная переменная, то:
(1) - формула
(2) - формула
(3) - формула
Предикат
"x=4n"
, n - натуральное:
(1) арифметический
(2) не арифметический
(3) арифметический или нет, в зависимости от значений n
Композиция двух изоморфизмов:
(1) не будет изоморфизмом
(2) будет изоморфизмом
(3) будет тождественным
Глубина формулы :
(1) на единицу меньше глубины
A
(2) на единицу больше глубины
A
(3) равна глубине
A
Если
х
- свободное вхождение в формулу А
, то оно всегда:
(1) свободное вхождение в
(2) терм в
(3) формула в
Отметьте высказывание, которое является выражением:
(1) "климат теплый"
(2) "климат местами теплый, местами - холодный"
(3) "1+2=4"
Замкнутым термам соответствуют:
(1) элементы носителя
(2) правила вывода
(3) замкнутые формулы
Вопрос о выводимости произвольных формул языка первого порядка:
(1) неразрешим
(2) разрешим
(3) неопределен
В теорию плотных линейных упорядоченных множеств без первого и последнего элемента входит аксиома:
(1)
(2)
(3)
Если теория аксиоматизируема, то подструктура ее нормальной модели является:
(1) ее моделью
(2) ее сигнатурой
(3) полной
Множество ограничено, если все элементы его гипердействительного аналога:
(1) конечны
(2) бесконечны
(3) нуль
Если - минимальная глубина схемы, вычисляющая функцию , то:
(1) ,
(2) ,
(3) ,
Теоремой исчисления высказываний является:
(1)
(2)
(3)
Верна формула:
(1)
(2)
(3)
Чтобы задать интерпретацию сигнатуры
S
, необходимо:
(1) для каждого функционального символа
S
указать функцию
(2) для каждого символа указать ее сигнатуру
(3) указать валентность всех функции
n - местный предикат
P
- устойчив относительно автоморфизма , если:
(1)
(2)
(3)
Минимальное число слагаемых в сумме вида
1+1+…+1
, при котором она обращается в нуль - это:
(1) характеристическое поле
(2) характеристика поля
(3) характеристическое число
Итерации
A
и B
элементарно эквивалентны тогда и только тогда, когда в соответствующей игре Эренфойхта:
(1) будет ничья
(2) выигрывает Консерватор
(3) выигрывает Новатор
Если
х
- свободное вхождение в формулу А
или В
, то оно:
(1) может быть или нет свободным вхождением в
(2) свободное вхождение в всегда
(3) формула, если формула
Всякое непротиворечивое множество замкнутых формул:
(1) имеет модель
(2) не может иметь модель
(3) имеет нечетное число моделей
Алгоритм вывода формул :
(1) не существует
(2) существует практически
(3) существует теоретически
Арифметика Пеано - это арифметика:
(1) формальная
(2) из чисел 1,2,…,9
(3) неформальная
Любая теория, устойчивая относительно объединения:
(1) имеет
П2
аксиоматизацию
(2) не имеет
П2
аксиоматизацию
(3) не полна
Если существует бесконечно далекий
ak
из ряда ‹ai›
, I=0,1,…
который бесконечно близок к а
, то:
(1)
а
- предел ‹ai›
(2)
а
- большая величина
(3)
а
- малая величина Отношение
x + 5=y
(x, y
- натуральные) является:
(1) симметричным, рефлексивным, транзитивным
(2) несимметричным, нерефлексивным, нетранзитивным
(3) симметричным, рефлексивным, нетранзитивным
Для произвольных формул
А, В
:
(1)
(2)
(3)
Без аксиомы "исключенного третьего" выводима:
(1)
(2)
(3)
Параметром формулы
A
может быть:
(1)
(2)
(3) параметры - формула
Всякая формула в , где +1 - функция прибавления 1:
(1) эквивалентна некоторой бескванторной формуле
(2) эквивалентна некоторой кванторной формуле
(3) не эквивалентна никакой бескванторной формуле
Если группа - интерпретация сигнатуры , то подструктуры - это:
(1) поля
(2) группы
(3) подгруппы
Для счетного (конечного) подмножество интерпретации
M
:
(1) не существует сигнатуры
(2) не существует конечной или счетной подструктуры
M
(3) существует конечное (счетное) подструктура
M
Если выводима формула
А(с/х)
, где А
- формула, х
- переменная, с
- константа не входящая в А
, то тогда:
(1) не выводима
А
(2) выводима и
А
(3) выводима